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Abstract: A stereoconfrollcd access to the conveniently functionalized homochiral 
A-ring intermediates including B-seco taxunes is described. 

The recent total syntheses of taxol,l over twenty years after its structure determination, represent the 

combination of dozens of man-years expended in benchwork and thinking with a touch of strategic overlapping. 

These syntheses are undoubtedly monumental in character nevertheless they leave much rm for improvement 

until a viable microbial approach2 is published. In previous reports3 we have described methods for the 

preparation of both left and right-half building units from the same precursor, the (S)-(+)-Hajos-Parrish ketone 

1. We report here an efficient route to more elaborated left-half taxoid building units which either can be used in 

our main strated (the aldol-annelation-fragmentation , C9-ClO, C2-C3, C2-/-C 10, sequence) or could made 

use of in several other literatux approaches leading to taxoid 5 and taxamycin 6 frameworks. 

The bicyclo[3.2.l]octanc derivatives 9 and 10, obtained according to ref 3 from (S)-(+)-Hajos-Parrish 

ketone. served as starting materials to several A-ring substructures for an A--> AC-->ABC mode of taxoid 

construction. Aldol condensations (LDA, TMP, -3OT, 2h, then addition of the appropriate aldehyde at -78”C, 
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10 min)’ of 10~ with benzaldehyde and of lob (MOMCl, iprzNE% CH2C12 r.t. 95% from lOa, [a]D -59. 

c=l.l. m.p. 73-74T, ether-heptane) with methacrolein land 3-formylcyclohexenone8 afforded the B-seco 

taxane frameworks 5 ([RID +8, c=O.8), 11 and 4 ([RID -131, c=l.O) in 76, 50, and 55% isolated yield 

respectively together with recovered starting ma-s. The ClO-C9 bond formation thus achieved set the stage 

for the A-C-ring linkiug. Fragmentations wets accomplished by lead tetraacetate oxidation (Ph(OAo)4, CH3CN 

-20’. 5 mm) either on the a-ketol 12 ([a]~ -21, c=l.O) obtained from 1Ob (IBDMSOTf. CH&12, collidiue, 

then 03, CH#2-pY, -78°C and TBAF-THE, 70% combined yield), or its corresponding dial 13 (NaBH+ 

CH2C!12-EtOH, CL, 10 min, 98%) leading to the aldehyde-acid 8 or dialdehyde 7 in 98 and 80% yield 

respe.ctiveIy, ready for further elaboration on C2 and ClO. 

12 13 

Setting the C-131 center: With a view to installing the C-13 hydroxy functionaiity, we studied the 

nucleophilic epoxidationlof enones 16 ([U]D +118, c=l.O), 18 ([a]~ +46. ~1.3) and 20 ([a]D e132. c=l.l) 

prepared from a commdn precursor, 14 ([aID +63, ~1.0, m.p. 72-73T, ether-heptane}, in a three step 

sequence (TMSOTf-colhdine, -lO°C, 15 rnin, followed by NBS-THF, -78OC, 10 miu and subsequent 

dehydrobromination with CaC03-dimethylacetamide, 1 h reflux, 75% overall yield) for the double bond 

formation, with additional deprotection (BF3.Et$k CH&, r.t., quantitative) and Swem oxidation (DMSO, 

oxalyl chloride, -60°C, 90%) for the enones 16 and 18 (Scheme 1). 
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Scheme 1: a) BF3.Et20, CHzCI2, r.t. b) TMSOTf-cdUdine. -1W’C. then NBS-THF, -78% 10 min., then CaC03- 

dimethylacetamide, 1 h ~flui c) 30% H20+iN N&OH, B&OH. r.t. d) DMSO, oxalyl chloride, CH2C12, -60°C e) 6N NaOH, 

MeOH, r.t. 0 TBbMSOTf, cdllidine, CH2C12 g) Sml2, THF-MeoH, -90°C h) C$, CH$t2 , Py, -78T. then PPb3. 

In the course of this endeavor we discovered a complete facial selectivity reversal from 18 (a- 

epoxidation, single isomer) to 20 &epotidation. single isomer), while enone 16 gave mixed results (two 

diastereomers, p/a: 3.5/l) under the same reaction conditions. 9 Thus, tl3u-protected enone 20 upon treatment 
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with 30%H202, 6N NaOH, MeOH, at 0. for 24 h, afforded a 75% yield of B-epoxide 21 ([a]D +6, c=l.O). 

Appropriate processing of enone 18 allowed for access to a C-13 a-hydroxylation as required for taxoid A-ring. 

Stereoselective nucleophilic epoxidation of the latter (Na0I-I. Hz@, MeOH, r.t, 15 min) afforded a %k yield 

of a-epoxy ketone 19 ([a]~ +248, c=l.O) which upon room temperature treatment with TBDMSOTf in 

C&Cl2 in the presence of colkline followed by Srnl2 mediated regiosekctive epoxide ring opening (3 equiv of 

SmIZ in THF-MeOH at -!3O”C, 15 min) led to aldol23 @Cl%, hvo steps). Ozonolysis (03, CH$Jz-Py, -78°C 

then PPh$ and subsequent esterification (diazomethane, ether, OOC), gave 6 (72% from 23). a conveniently 

functional&d homochiral A-ring component ready ta serve in a “combined strategy ” taxoid synthesis. A single 

step modification of enone 18 (NaOH-MeOH-H20, r.t.. 2 h) led in a quantitative yield to compound 24 as a 

result of nucleophilic addition to the non-conjugated carbonyl followed by a ring opening and a double bond 

migration. 

Pre-B-seco taxanes? the “indirection” approach: Attempted aldol type reactions with the 

hindered aldehyde 28 (ref. 4). having the angular methyl group at C-S. failed. 1 o As an alternative sequence we 

considered the synthesis of target molecules 2 and 3, containing the left and right half moieties bonded in a way 

which allows further elaboration towards the taxoid ABC framework, using tie same C-C bonding as in the 

initial strategy. S&g from 9, acetonide formation (dimethoxy propane, acetone, pTosOH, r.t., 30 min, 98%) 
followed by reduction (DIBAL-CH2C12, r.t., 2 h) gave the corresponding alcohol 25 in 99% yield. 

Werification with acid 29, obtained according to ref. 4, @CC, DMAP, CHzCl2, r.t, 4B h) led to 27 in 90% 

yield which after a Swern oxidation and MOM-protection (MOMCl, iPr+JEt, CH$$, r.t., 36 h) afforded the 

desired target molecule 3 ([a]~ -46, c=4.8), in 70% combined yield. Ben@ protection of the alcohol 25 

(BnBr, NaH, DMF, r-t., 15 h, 98%) followed by deprotection of the acetonide (2N HCl, THF, r.t., 1.5 h, 

96%) and subjection of the resulting diol to the same reaction sequence as for 3, gave compound 30 ([a]D -20, 

c=l.O) in 80% overall yield. The latter was transformed by a three-step sequence (TBDMSOTf, EtsN, CH#&, 

r.t., 2 h, followed by ozonolysis in CHzClz at -7W and subsequent desilylation with T&W, THF, r.t, 20 

min) to the u-ketol 31 ([a]~ -18. c=l.O) in 60% overall yield, which upon esterification with 29 as above 

gave a 97% yield of 2 11([~]~ -15, c=l.O). 
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Scheme 2: a) diu~ethoxy propane. acetone, pTosOH, &then DIBAL, CH$& IL b) 29, DCC-DMAP, CH2Cl2 , r.t. c) BnJ3r, 
NaH. DMF, r.t. d) ZN HCI, THF, r.t. e) DMSO-oxalyl chloride, -6OT then MOMCI. iPr2EtN. C3+C12 , r.t. 0 TBDm4SOTf. 
E$N, CH2C12. r.t., then q, CH2Cl2 , Py, -78T, PPb3. 

h conclusion, our route provides a simple entry to several optically homogeneous, multifunctional, left- 
half ranoid building blocks and allows scope for combined strategies.1* 
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Titanium, cetium ar boron enolates proved to be inefficient. On the other hand, heating the a-ketol10a 
in benzene in the presence of a catalytic amount of pTosOH for 4 h initiated an a-ketol rearrangement 
with C14-Cl bond migration leading to the ketol32 ([a]~ +52,c=l.O, m.p. 86-88*C, pentane-ether) 
in 72% yield, wichl for further characterization was subjected to an oxidative fragmentation (NaIOd, 
THF-H20, 1 h, r.t.) and esterification (CH2N2, Et20,O”C) to give 33 ([n]~ +9, c=l.O) in 80% yield. 

2: I.R. (Elm) 3020,2978, 2930.2843. ‘2874, 1763. 1735, 1454, 1267, 1227, 1201, 1155, 1109, 1056. 1037,994; ‘A- 
NMR (CDC13, 400 WIHz) 6 1.09 (3H, s), 1.30 (3H, 81, 1.33 (3H,sh 1.34 (3H, SX 1.20-2.30 (%I, m>, 2.60 (Xi, br.S), 
3.19 (1H. d, J=9.0). 3638 (3H, s). 3.60 (lH, d, J=9.0), 4.37 (IH, d, J=ll.S), 4.52 (U-I, d, 5=11.8), 4.79 (IN, d, J=7.3), 
5.23 (lH, d, J=7.3), 5.30 (U-I, br.s), 5~55-5.90 (4H, m), 7.30 (5H. m); 13C-NMR (CDCl+ 75 MHz) 6 21.9, 25.5, 
25.8, 27.0, 29.4, 38.q. 43.8, 52.0, 55.2, 73.0, 73.2, 80.4, 88.3, 92.4, 124.6, 124.8, 127.4, 127.6, 128.2, 138.5, 173.7, 
213.7; EIMS: 482 (.M*., 1). 226(U). 91(IOO). CXMR.483 UJvf+Hl+,63), 451(1oOh 
Structures for all nbw compounds were established by high field 1 and 2D NMR techniques and 
supported by molebular mechanics calculations. Optical rotations were measured in chloroform. 
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